

Intro Company Materials Production Video Applications Quality Environment References

Corporate presentation

The company at a glance

Intro **Company** Materials Production Video Applications Quality Environment References

GREEN MACHINING

TOOLMAKING

The company at a glance

Intro **Company** Materials Production Video Applications Quality Environment References

Intro **Company** Materials Production Video

Applications

Quality

Environment

References

The company at a glance

Equipment of our production area of about 4.000 square metres:

Ceramic production:

- 20 powder press machines of 4 to 120 tons
- 4 vacuum extrusions presses
- 1 injection moulding machine
- 8 sintering kilns from 2 2500 liters of volume until Max. 1750°C

Green-part-treatment:

- 7 turning machines
- · 6 drilling machines
- · 2 milling machines
- · 3 separation-machines

Grinding:

- CNC cylindrical grindingmachine
- · Centerless grindingmachine
- · Honemachine D1,0-40mm
- Double sided face grindingmachine
- Single sided polish- and lapmachine
- CNC surface grinding machine
- Centrifuge for coolant cleaning and temperature control

Tool manufacturing:

- · CNC 5-axes milling machine
- CNC wire-cut EDM
- · CNC die sinking EDM
- CAD/CAM program system 2D/3D
- · Grinding machines
- · 2 conventional milling machines
- · 2 turning machines
- · Drilling machine

Intro Company **Materials** Production Video Applications Quality Environment References

Materials Properties and technical values

Properties		Symbol	Unit	Steatite C221	Steatite porous C230	Cordierite C410	Cordierite porous C520	Mullite C620	Aluminium oxide C795	Aluminium oxide C799	Zirconium oxide Y ₂ O ₃ partially stabilized C830 / TZP	Zirconium oxide MgO partially stabilized C830 / PSZ	Aluminium titanate ATI
Mechanical (at room temp.)												-	
Open porosity		Pa	% by vol.	0	35	0,5	20	0	0	0	0	0	7 - 16
Min. density		ρ	g/cm ³	2,7	1,8	2,1	1,9	2,8	3,7	3,9	6,0	5,7	3,5
Compressive strength		σ_{dB}	MPa	900	100	300	200	-	1800	2100	2200	1800	450
Bending strength		$\sigma_{\rm bB}$	MPa	140 ¹⁾	30 ¹⁾	60 ¹⁾	25 ¹⁾	150 ²⁾	280 2)	300 ²⁾	1100 ¹⁾	500 ¹⁾	40 ²⁾
Modulus of elasticity		E	GPa	110	-	-	-	150	280	300	205	205	35
Mohs' hardness (index) Vickers hardness		MH HV ₁₀	Diamond=1 GPa	7	:	7	6	7	9 12-15	9 17-23	8 12	6,5 9	- 5
Thermal		1				1		1	1			II	
Coefficient of thermal linear expansion	20-100°C	α	10 ⁻⁶ K ⁻¹	6-8	8-10	1-3	3-6	5-6	5-7	5-7	8-9	8-9	0,5
	20-300°C	α _t	10 ⁻⁶ K ⁻¹	7-9	8-10	1-3	4-6	5-6	6-7,5	6-8	9-11	9-11	0,5 - 1,5
	20-600°C	α	10 ⁻⁶ K ⁻¹	7-9	8-10	2-4	4-6	5-7	6-8	7-8	10-12	10-12	1 -2
	20-1000°C	α _t	10 ⁻⁶ K ⁻¹	8-9	-	2-4,5	4-6	5-7	7-9	7-9	11-13	11-13	1,5 – 2
Specific heat capacitiy	20-100°C	Cp	Jkg ⁻¹ K ⁻¹	800-900	800-900	800-1200	750-850	850-1050	850-1050	850-1050	450-500	450-550	800
Thermal conductivity	20-100°C	λ	Wm ⁻¹ K ⁻¹	2-3	1,5 - 2	1,5 - 2,5	1,3 - 1,8	6-15	16 - 28	19 - 30	1,2 - 3,5	1,2-3,5	1,5 - 2,5
Resistance to thermal shock		ΔΤ	К	100	-	250	200	150	140	150	80	80	700
Max. application temperature		T	°C	1200	900	1200	1200	1200	1400	1500	1000	800	900
Electrical													
Electric strength		Ed	kVmm ⁻¹	20	-	10	-	15	15	17	-	-	-
Withstand voltage (1-min.)		U	kV	30	-	15	-	20	18	20	-	-	-
Dielectric constant	48-62Hz	ε _r	-	6	-	5	-	8	9	9	22	22	-
Dissipation factor 20°	48-62Hz	tan _o	10 ⁻³	1,5	-	25	-	-	0,5	0,2	-	-	-
	1kHz	tan _o	10 ⁻³	-	-	-	-	-	1	0,5	-	-	-
	1MHz	tan _o	10 ⁻³	1,2	-	7	-	-	1	1	2	2	-
Volume resistivity	20°C	ρν	Ωcm	10 ¹³	-	10 ¹²	-	10 ¹³	1014	1014	1011	1011	1014
	200°C	ρν	Ωcm	1011	10 ¹⁰	10 ⁸	10 ⁹	10 ¹¹	10 ¹²	10 ¹²		-	-
	600°C	ρν	Ωcm	107	107	105	105	10 ⁶	10 ⁸	10 ⁸	10 ³ -10 ⁶	10 ³ -10 ⁶	10 ⁹
T for volume resistivity	100 MΩcm	T _{k100}	°C	500	500	200	-	300	500	500	100	100	-
	1 MΩcm	T _{k1}	°C	800	800	400	500	600	800	800	350	350	-
Tracking behaviour		KE	KC-stens	600	600	003	600		600	600	600	600	_

Admissible dimensional deviations in mm												
Nominal size range	≤4	≤ 6	≤8	≤10	≤13	≤ 16	≤20	> 20				
Tolerance according to DIN 40680 mean	±0,15	±0,2	±0,25	±0,3	±0,35	±0,4	±0,45	<u>±2,0%</u>				
Restricted tolerance Class I to be agreed upon	±0,1	-	±0,15	-	±0,2	-	±0,25	±1,5%				
Restricted tolerance Class II to be agreed upon	-	±0,1	-	-	±0,15	-	±0,2	±1,0%				
Shape and position Tolerance according to DIN 40680-2m	e.g. straightness 0,5% of the length independent according to DIN ISO 8015											
Precision finishing	Toleran grindin	Tolerances as required grinding, lapping, polishing, honing etc.										

Material comparison	C221	C230	C410	C520	C620	C795	C799	C830	ATI	Metal	Plastics			
Mechanical														
Strength	0		-		0	+	+	++	-	0				
Density	-		-		-	0	+	++	0	++				
Hardness	0		0	-	0	+	++	+	-	0				
Wear resistance	0		-	-	0	+	++	++	-	-				
Thermal	Thermal													
Conductivity	-	-	-	-	0	++	++	-	-	++				
Thermal linear expansion	0	+		-	0	0	0	+		+	++			
Resistance to thermal shock	0	0	+	+	0	0	0	-	++	++	-			
High temperature stability	+	0	+	+	+	++	++	0	++	-				
Electrical														
Electrical insulation	++	-	0		+	+	+	0	+		++			
Dielectric constant	-		-		0	0	0	++						
Dissipation factor	-		++			-		-						
Chemical resistance	0		-	-	0	+	++	+	0	-				

++ verv hiah + hiah O average - verv low

Intro Company **Materials** Production Video Applications Quality Environment References

Materials Properties (Table 1)

Properties		Symbol	Unit	Steatite C221	Steatite porous C230	Cordierite C410	Cordierite porous C520	Mullite C620
Mechanical (at room temp.)								
Open porosity		Pa	% by vol.	0	35	0,5	20	0
Min. density		ρ _a	g/cm ³	2,7	1,8	2,1	1,9	2,8
Compressive strength		σ_{dB}	MPa	900	100	300	200	-
Bending strength		$\sigma_{\tt bB}$	MPa	140 ¹⁾	30 ¹⁾	60 ¹⁾	25 ¹⁾	150 ²⁾
Modulus of elasticity		E	GPa	110	-	-		150
Mohs' hardness (index) Vickers hardness		MH HV ₁₀	Diamond=1 GPa	7	-	7	6	7-
Thermal								
Coefficient of thermal linear expansion	20-100°C	α _t	10 ⁻⁶ K ⁻¹	6-8	8-10	1-3	3-6	5-6
	20-300°C	α_t	10 ⁻⁶ K ⁻¹	7-9	8-10	1-3	4-6	5-6
	20-600°C	α_t	10 ⁻⁶ K ⁻¹	7-9	8-10	2-4	4-6	5-7
	20-1000°C	α_t	10 ⁻⁶ K ⁻¹	8-9	-	2-4,5	4-6	5-7
Specific heat capacitiy	20-100°C	Cp	Jkg ⁻¹ K ⁻¹	800-900	800-900	800-1200	750-850	850-1050
Thermal conductivity	20-100°C	λ	Wm ⁻¹ K ⁻¹	2-3	1,5 - 2	1,5 - 2,5	1,3 - 1,8	6-15
Resistance to thermal shock		ΔΤ	К	100	-	250	200	150
Max. application temperature		Т	0°	1200	900	1200	1200	1200
Electrical								
Electric strength		E _d	kVmm ⁻¹	20	-	10	-	15
Withstand voltage (1-min.)		U	kV	30	-	15	-	20
Dielectric constant	48-62Hz	ε _r	-	6	-	5	-	8
Dissipation factor 20°	48-62Hz	tan_{δ}	10-3	1,5	-	25	-	-
	1kHz	tan_{δ}	10-3	-	-	-	_	
	1MHz	tan_{δ}	10-3	1,2	-	7	-	-
Volume resistivity	20°C	ρν	Ω cm	10 ¹³	-	10 ¹²	-	10 ¹³
	200°C	ρν	Ω cm	10 ¹¹	1010	10 ⁸	10 ⁹	1011
	600°C	ρν	Ωcm	10 ⁷	107	105	105	10 ⁶
T for volume resistivity	100 MΩcm	T _{k100}	0°	500	500	200	-	300
	$1 \mathrm{M}\Omega\mathrm{cm}$	T _{k1}	0°	800	800	400	500	600
Tracking behaviour		KF	KC-steps	600	600	600	600	-

Intro Company **Materials** Production Video Applications Quality Environment References

Materials Properties (Table 2)

Properties		Aluminium oxide C795	Aluminium oxide C799	Zirconium oxide Y ₂ 0 ₃ partially stabilized C830 / TZP	Zirconium oxide MgO partially stabilized C830 / PSZ	Aluminium titanate ATI
Mechanical (at room temp.)						
Open porosity		0	0	0	0	7 - 16
Min. density		3,7	3,9	6,0	5,7	3,5
Compressive strength		1800	2100	2200	1800	450
Bending strength		280 ²⁾	300 ²⁾	1100 ¹⁾	500 ¹⁾	40 ²⁾
Modulus of elasticity		280	300	205	205	35
Mohs' hardness (index) Vickers hardness		9 12-15	9 17-23	8 12	6,5 9	- 5
Thermal			1	1	11	
Coefficient of thermal linear expansion	20-100°C	5-7	5-7	8-9	8-9	0,5
	20-300°C	6-7,5	6-8	9-11	9-11	0,5 – 1,5
	20-600°C	6-8	7-8	10-12	10-12	1 –2
	20-1000°C	7-9	7-9	11-13	11-13	1,5 – 2
Specific heat capacitiy	20-100°C	850-1050	850-1050	450-500	450-550	800
Thermal conductivity	20-100°C	16 - 28	19 - 30	1,2 - 3,5	1,2-3,5	1,5 - 2,5
Resistance to thermal shock		140	150	80	80	700
Max. application temperature		1400	1500	1000	800	900
Electrical			_			
Electric strength		15	17	-	-	-
Withstand voltage (1-min.)		18	20	-	-	-
Dielectric constant	48-62Hz	9	9	22	22	-
Dissipation factor 20°	48-62Hz	0,5	0,2	-	-	-
	1kHz	1	0,5	-	-	-
	1MHz	1	1	2	2	-
Volume resistivity	20°C	1014	1014	1011	1011	1014
	200°C	10 ¹²	1012		-	-
	600°C	108	108	10 ³ -10 ⁶	10 ³ -10 ⁶	10 ⁹
T for volume resistivity	100 M Ω cm	500	500	100	100	-
	$1 \text{M}\Omega \text{cm}$	800	800	350	350	-
Tracking behaviour		600	600	600	600	-

Intro Company **Materials** Production Video Applications Quality Environment References

Materials Admissible dimensional deviations

Admissible dimensional deviations in mm												
Nominal size range	≤4	≤6	≤8	≤ 10	≤ 13	≤ 16	≤20	> 20				
Tolerance according to DIN 40680 mean	±0,15	±0,2	±0,25	±0,3	±0,35	±0,4	±0,45	±2,0%				
Restricted tolerance Class I to be agreed upon	±0,1	-	±0,15	-	±0,2	-	±0,25	±1,5%				
Restricted tolerance Class II to be agreed upon	-	±0,1	-	-	±0,15	-	±0,2	±1,0%				
Shape and position Tolerance according to DIN 40680-2m	e.g. straightness 0,5% of the length independent according to DIN ISO 8015											
Precision finishing	Tolerances as required grinding, lapping, polishing, honing etc.											

Intro Company **Materials** Production Video Applications Quality Environment References

Materials Mechanical, thermal and electrical properties

Material comparison	C221	C230	C410	C520	C620	C795	C799	C830	ATI	Metal	Plastics		
Mechanical													
Strength	0		-		0	+	+	++	-	0			
Density	-		-		-	0	+	++	0	++			
Hardness	0		0	-	0	+	++	+	-	0			
Wear resistance	0		-	-	0	+	++	++	-	-			
Thermal													
Conductivity	-	-	-	-	0	++	++	-	-	++			
Thermal linear expansion	0	+		-	0	0	0	+		+	++		
Resistance to thermal shock	0	0	+	+	0	0	0	-	++	++	-		
High temperature stability	+	0	+	+	+	++	++	0	++	-			
Electrical													
Electrical insulation	++	-	0		+	+	+	0	+		++		
Dielectric constant	-		-		0	0	0	++					
Dissipation factor	-		++			-		-					
Chemical resistance	0		-	-	0	+	++	+	0	-			

Intro Company **Materials** Production Video Applications Quality Environment References

Materials Comparison of bending strengths

Manufacturing process in detail

Intro Company Materials **Production** Video Applications Quality Environment References

Manufacturing process in detail

Intro Company Materials **Production** Video Applications Quality Environment References

Intro Company Materials Herstellung **Video** Applications Quality Environment References

Videos

On our YouTube channel you will find some videos about manufacturing and production.

Milling and grinding Assembly

Pressing

Image

Tool-Making

Applications of technical ceramics

Intro Company Materials Production Video **Applications** Quality Environment References

Sealing and regulating discs Valves Pump components

Parts for processing plant and apparatus engineering

Pressure sensors Sensor holder Temperature sensors

Nozzles

Automotive components

Ceramics-metal composites

Applications of technical ceramics

Intro Company Materials Production Video **Applications** Quality Environment References

Bushes and break tubes Heater formers Structural parts

Components for household appliances Temperature controllers Thermoelement plug and -socket connectors

Insulators

Lamp sockets

Lamp holders

Tubes, Axes, measuring components

Intro Company Materials Production Video **Applications** Quality Environment References

Sealing and regulating discs

for hydro-engineering, pneumatic, hydraulic systems

Valves

in medical technology and in household appliances

Pump components

for sliding ring bearings, pistons, seals, suitable for abrasive substances

Intro Company Materials Production Video **Applications** Quality Environment References

Parts for processing plant and apparatus engineering

Level indicators, soldering stations, projectors, high-accuracy weighing machines, spark suppressors, laser systems, X-ray analyzers, locators for high-load resistors, potentiometer rings, insulating rings for injection-moulding tools with low heat conduction

Intro Company Materials Production Video **Applications** Quality Environment References

Pressure sensors

with diaphragm thicknesses up to 0.12 mm, fluid-resistant

Sensor holder

for smoke detector in aircraft construction

Temperature sensors

for thermal protection, air conditioning, thermometers

Intro Company Materials Production Video **Applications** Quality Environment References

Nozzles

featuring high abrasion-resistance, minimum wear and high corrosionresistance for high-pressure cleaning systems up to 2,000 bar and nozzle-hole diameters up to 0.15 mm, for metal-powder atomizing, powder coating plants or glue supply systems

Intro Company Materials Production Video **Applications** Quality Environment References

Automotive components

for lambda probes, diesel emission engineering, sealing discs for petrol pumps, electrical resistors for fan motors and instrument illumination, plain bearings in aggressive exhaust gas, support for temperature sensors in heating installations

Intro Company Materials Production Video **Applications** Quality Environment References

Ceramics-metal composites, Assembly

all the conventional connection techniques, screw-fastening, riveting, upsetting, roller-burnishing, gluing, soldering, in industrial quantities using assembly robots

Intro Company Materials Production Video **Applications** Quality Environment References

Bushes and break tubes

for tubular heaters and heating cartridges

Heater formers

for cylinder heating and heating/ cooling combination system, fan heaters

Structural parts

for industrial furnaces, heat guns, continuous-flow heaters, heat exchangers

Intro Company Materials Production Video **Applications** Quality Environment References

Components for household appliances

such as thermal radiators, cookers, toasters, fan heaters, microwave ovens and the components required for

Temperature controllers

such as controller housing, baseplate, actuating pins and control levers.

Thermoelement plug and -socket connectors

Intro Company Materials Production Video **Applications** Quality Environment References

Insulators

for apparatus construction, electrostatic filter plants, transformer bushes, post insulators, corona surface coating plants, unglazed and glazed

Intro Company Materials Production Video **Applications** Quality Environment References

Applications of technical ceramics

Lamp sockets

in more than 100 versions of standard and special design for UV and IR radiators, halogen metal vapor lamps with 1, 2 or 4 pins in brass, nickel, steel or with pigtail leads. On request with colored glazing or laser inscription.

Intro Company Materials Production Video **Applications** Quality Environment References

Lamp holders

also in special design with coding and for multi-lamp fitting, ex-protected holders

Intro Company Materials Production Video **Applications** Quality Environment References

Tubes, Axes, measuring components

Tubes: Single- and multi-hole, collar tubes, tubes for starting electrode axes: high-precision grinded with cross-holes or grooves

Quality management

Intro Company Materials Production Video Applications Quality Environment Referenzen

Intro Company Materials Production Video Applications **Quality** Environment Referenzen

Qualitätssicherung

Introduction and implementation of a CAQ software integrated into all processes in 2016

- Quality planning, inspection and evaluation in WE-testing, Manufacturing and WA-testing
- Complaint and service management
- · Gauge Management
- Initial sample inspection

Environment

Intro Company Materials Production Video Applications Quality **Environment** References

Since 2011, a photovoltaic system with solar modules from SCHOTT-Solar has been installed on the roof of our company building. The system is mainly used to cover our company's electricity needs and supports us in making a sustainable contribution to environmental protection. In 2018, the PV system was expanded to 83 kWp and now covers about 30% of our of our total electrical energy requirements.

Environment – CO₂-neutral energy supply

Intro Company Materials Production Video Applications Quality **Environment** References

We have now also switched our natural gas supply for sintering technical ceramics to CO₂ neutral ECOGAS from the regional energy supplier HEWA GmbH, thus actively contributing to the energy turnaround. The CO₂ savings amount to approx. 435 tons annually. Since the beginning of 2017, our entire energy supply is 100 percent CO₂ neutral – TÜV certified.

Intro Company Materials Production Video Applications Quality **Environment** References

Environment - Conversion to LED bulbs

VOGT GmbH has taken the next step in energy saving with the conversion to LED lights since September 2014.

In total, 200 conventional fluorescent tubes and lights were changed into high efficient LED lights of the latest generation.

The maximum required energy for lightning will be reduced by more than two-thirds (from 11,5 kW to 3,7 kW). Due to this step, we will achieve significant energy saving around 17,000 kWh each year!

Besides the high energy efficiency, LED technology convinces with its 15 times longer service life compared with conventional light sources – to save resources and avoid waste.

Zertifiziert nach DIN EN ISO 14001:2015

Intro Company Materials Production Video Applications Quality **Environment** References

TAW Cert GmbH Certification Company for Management-Systems and Personnel hereby certifies that

VOGT GmbH Ceramic Components Ottensooser Str. 52 D-91239 Henfenfeld

Scope

Production and distribution of technical ceramic components With tool design and tool manufacturing

has successfully established and is working in accordance with an environment management system.

A certification audit during the period of 02. Mar 2021 to 05. Mar 2021 provided proof that all requirements according to

DIN EN ISO 14001:2015

have been satisfied

Initial certification: 29. Mar 2018

This certificate is valid from 29. Mar 2021 to 28. Mar 2024

Certificate Registration No.: UM-020317-EN

Altdorf, 22. Mar 2021

Oliver Wenk, CEO TAW Cert GmbH

TAW Cert GmbH • Fritz-Bauer-Str. 13 • D-90518 Altdorf This certificate is the property of TAW Cert GmbH Page 1 of 1 In March 2018, we reached a further milestone in operational environmental protection with the initial certification according to DIN EN ISO 14001:2015. The globally valid and recognized certificate attests to our systematic and sustainable protection of the environment and its natural resources. Annual monitoring audits and other internal environmental protection measures will ensure the continuous improvement of our processes in the future.

Joining the Bavarian Environmental Pact

Intro Company Materials Production Video Applications Quality **Umwelt** References

The Bavarian Environmental Pact is an agreement between the Bavarian State Government and Bavarian industry. Our voluntary measures and the assumption of personal responsibility for environmental protection form the basis for participation.

References

Intro Company Materials Production Video Applications Quality Environment **References**

Intro Company Materials Production Video Applications Quality Environment References

Thanks for your Attention

