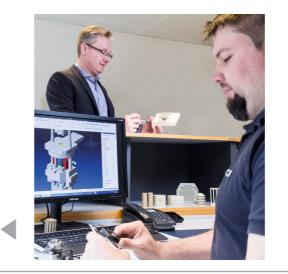


www.vogt-ceramic.de

VOGT Ceramic Components

For more than 40 years, VOGT GmbH has been manufacturing technical ceramic components. Our many years of experience have contributed towards our customers' success. With the aid of our expertise, we can influence the design of a new product at an early stage.


Thus, we are not only suppliers, but also competent partners in the development of functional solutions. Our targets are engineering ceramics for high-tech applications and performing value analyses.

State-of-the-art moulding machines and sintering plants with temperatures up to 1750°C enable production of high-precision and high-quality ceramic components over an area of 4,000 m². The tools, designed using CAD/CAM technologies, are manufactured in our own tool-shop and form the basis for our flexibility and capability. DIN ISO 9001:2000 certification is a prerequisite to ensure our customers' increasingly stringent requirements.

Due to their excellent physical properties, technical ceramic components are used in a wide range of industries. Components made of such materials are especially characterized by their electrical and mechanical properties at maximum temperatures, their wear and corrosion resistance. They offer decisive advantages where other materials meet their limits. Thus, technical ceramic components often have a crucial task as integral parts of highquality system modules.

The advantages of ceramic components at a glance:

- · Electrical insulation
- Mechanical strength
- Low density
- · Wear resistance and hardness
- Tracking resistance
- · Resistance to high temperatures
- · Resistance to thermal shock
- · Resistance to climate and ageing
- · Environmentally compatible disposal
- · Chemical resistance
- Food safe

SINTERING

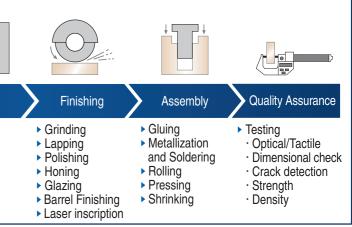
DESIGN

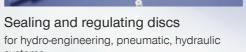
PRESSING OPERATION FILLING POSITION PRESSING POSITION DEMOULDING (Compaction) Internal die 300-1000 kN/cm² External die Green par Ceramic-granulate External die

DRY PRESSING

QUALITY ASSURANCE

PRODUCTION PROCESS Material preparation Moulding Green machining Sintering Pulverizing Dry pressing Milling Debindering Mixing Extruding Turning Sinter firing Filtering Drilling 900°to Injection 1750°C Granulating moulding Cutting Plasticizing Spray drying


TOOLMAKING



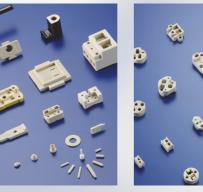
GRINDING

Highlights in Ceramics

systems

Valves

in medical technology and in household appliances


Pump components

for sliding ring bearings, pistons, seals, suitable for abrasive substances

Parts for processing plant and apparatus engineering

Level indicators, soldering stations, projectors, high-accuracy weighing machines, spark suppressors, laser systems, X-ray analyzers, locators for high-load resistors, potentiometer rings, insulating rings for injection-moulding tools with low heat conduction

Lamp holders also in special design with coding and for multi-lamp fitting, Ex-protected holders

Pressure sensors with diaphragm thicknesses up to 0.12 mm, fluid-resistant Sensor holder

for smoke detector in aircraft construction

for apparatus construction, electrostatic filter

plants, transformer bushes, post insulators,

corona surface coating plants, unglazed and

Temperature sensors for thermal protection, air conditioning, thermometers

Insulators

glazed

Components for household appliances such as thermal radiators, cookers, toasters, fan heaters, microwave ovens and the components required for

Temperature controllers such as controller housing, baseplate, actuating pins and control levers.

Thermocouples and plug-in connectors

Automotive components

for lambda probes, diesel emission engineering, sealing discs for petrol pumps, electrical resistors for fan motors and instrument illumination, plain bearings in aggressive exhaust gas, support for temperature sensors in heating installations

Ceramics-metal composites all the conventional connection techniques,

screw-fastening, riveting, upsetting, rollerburnishing, gluing, soldering, in industrial quantities using assembly robots

featuring high abrasion-resistance, minimum wear and high corrosion-resistance for highpressure cleaning systems up to 2,000 bar and nozzle-hole diameters up to 0.15 mm, for metal-powder atomizing, powder coating plants or glue supply systems

Background image

Sensor holder Cutting blades and knives Special lamp holders Pincer inserts Micro components Parts of watches and jewellery

Nozzles

Application examples

Bushes and break tubes for tubular heaters and heating cartridges

Heater formers

for cylinder heating and heating/cooling combination system, fan heaters

Structural parts

for industrial furnaces, heat guns, continuousflow heaters, heat exchangers

Lamp sockets

in more than 100 variations of standard and special design for UV and IR radiators, halogen metal vapor lamps with 1, 2 or 4 pins in brass, nickel, steel or with pigtail leads. On request with colored glazing or laser inscription.

Tubes, axes, measuring components Tubes: single- and multi-hole, collar tubes, tubes for starting electrode Axes: high-precision grinded with cross-holes or grooves

Properties and technical values of our materials

Steatite C221

Primarily consisting of magnesium silicate Dense material structure Good mechanical properties High volume resistance up to 1000°C Small loss factor

Steatite porous C230

Primarily consisting of magnesium silicate Porous material structure Low mechanical strength Machinable

Cordierite C410

Magnesium aluminium silicate Dense material structure High resistance to thermal shock Very low linear expansion

Cordierite porous C520

Magnesium aluminium silicate Porous material structure Low mechanical strength High resistance to thermal shock Low linear expansion

Mullite C620

Aluminium silicate Approx. 70% Al₂O₃ Dense material structure

Aluminium oxide C795, C799, ZTA

C795: >95% bis 99% Al2O3 - our standard with approx. 96% purity C799: >99% Al2O3 - our standard with 99.7% purity, in addition, a high-purity variant with 99.99% is available Mixed oxide ceramics ZTA: from aluminum oxide and zirconium oxide Dense material structure High mechanical strength and hardness High surface quality High thermal conductivity and thermostability High chemical resistance

Zirconium oxide C830

TZP Yttrium-partially stabilized Very high mechanical strength High edge stability Very good surface quality

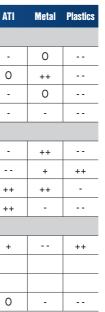
PSZ Magnesium-partially stabilized Very good tribological properties High corrosion resistance

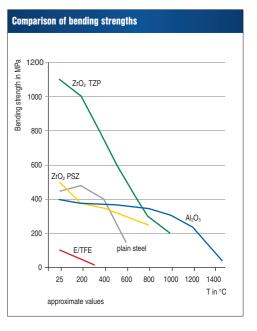
Aluminium titanate ATI Porous material structure

Very low linear expansion Very high resistance to thermal shock Low thermal conductivity Low wetting in case of metal melts

Properties		Symbol	Unit	Steatite C221	Steatite porous C230	Cordierite C410	Cordierite porous C520	Mullite C620	Aluminium oxide C795	Aluminium oxide C799	Zirconium oxide Y ₂ 0 ₃ partially stabilized C830 / TZP	Zirconium oxide MgO partially stabilized C830 / PSZ	Aluminium titanate ATI
Mechanical (at room temp.)													
Open porosity		Pa	% by vol.	0	35	0,5	20	0	0	0	0	0	7 - 16
Min. density		ρ	g/cm ³	2,7	1,8	2,1	1,9	2,8	3,7	3,9	6,0	5,7	3,5
Compressive strength		σ_{dB}	MPa	900	100	300	200	-	1800	2100	2200	1800	450
Bending strength		σ_{bB}	MPa	140 ¹⁾	30 ¹⁾	60 ¹⁾	25 ¹⁾	150 ²⁾	280 2)	300 ²⁾	1100 ¹⁾	500 ¹⁾	40 ²⁾
Modulus of elasticity		E	GPa	110	-	-	-	150	280	300	205	205	35
Mohs' hardness (index) Vickers hardness		MH HV ₁₀	Diamond=1 GPa	7	-	7	6	7-	9 12-15	9 17-23	8 12	6,5 9	- 5
Thermal					1	1		1			1		
Coefficient of thermal linear expansion	20-100°C	α_t	10 ⁻⁶ K ⁻¹	6-8	8-10	1-3	3-6	5-6	5-7	5-7	8-9	8-9	0,5
	20-300°C	α _t	10 ⁻⁶ K ⁻¹	7-9	8-10	1-3	4-6	5-6	6-7,5	6-8	9-11	9-11	0,5 - 1,5
	20-600°C	α _t	10 ⁻⁶ K ⁻¹	7-9	8-10	2-4	4-6	5-7	6-8	7-8	10-12	10-12	1 –2
	20-1000°C	αt	10 ⁻⁶ K ⁻¹	8-9	-	2-4,5	4-6	5-7	7-9	7-9	11-13	11-13	1,5 – 2
Specific heat capacitiy	20-100°C	Cp	Jkg ⁻¹ K ⁻¹	800-900	800-900	800-1200	750-850	850-1050	850-1050	850-1050	450-500	450-550	800
Thermal conductivity	20-100°C	λ	Wm ⁻¹ K ⁻¹	2 - 3	1,5 - 2	1,5 - 2,5	1,3 - 1,8	6-15	16 - 28	19 - 30	1,2 - 3,5	1,2-3,5	1,5 - 2,5
Resistance to thermal shock		ΔΤ	К	100	-	250	200	150	140	150	80	80	700
Max. application temperature		Т	°C	1200	900	1200	1200	1200	1400	1500	1000	800	900
Electrical							•				-		
Electric strength		Ed	kVmm ⁻¹	20	-	10	-	15	15	17	-	-	-
Withstand voltage (1-min.)		U	kV	30	-	15	-	20	18	20	-	-	-
Dielectric constant	48-62Hz	ε _r	-	6	-	5	-	8	9	9	22	22	-
Dissipation factor 20°	48-62Hz	tan _o	10-3	1,5	-	25	-	-	0,5	0,2	-	-	-
	1kHz	tan _õ	10-3	-	-	-	-	-	1	0,5	-	-	-
	1MHz	tan _o	10-3	1,2	-	7	-	-	1	1	2	2	-
Volume resistivity	20°C	ρν	Ωcm	10 ¹³	-	10 ¹²	-	10 ¹³	1014	1014	1011	1011	1014
	200°C	ρν	Ωcm	1011	10 ¹⁰	10 ⁸	10 ⁹	1011	1012	10 ¹²		-	-
	600°C	ρν	Ωcm	107	10 ⁷	10 ⁵	10 ⁵	10 ⁶	10 ⁸	10 ⁸	10 ³ -10 ⁶	10 ³ -10 ⁶	10 ⁹
T for volume resistivity	100 MΩcm	T _{k100}	٥C	500	500	200	-	300	500	500	100	100	-
	1 MΩcm	T _{k1}	°C	800	800	400	500	600	800	800	350	350	-
Tracking behaviour		KF	KC-steps	600	600	600	600	-	600	600	600	600	-

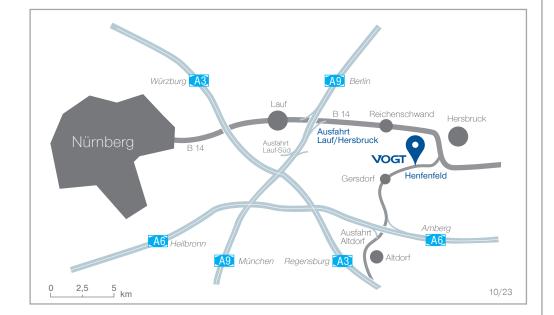
Admissible dimensional deviations in mm									
Nominal size range	≤4	≤ 6	≤8	≤ 10	≤ 13	≤ 16	≤ 20	> 20	
Tolerance according to DIN 40680 mean	± 0,15	±0,2	±0,25	±0,3	±0,35	±0,4	±0,45	±2,0%	
Restricted tolerance Class I to be agreed upon	±0,1	-	±0,15	-	±0,2	-	±0,25	±1,5%	
Restricted tolerance Class II to be agreed upon	-	±0,1	-	-	±0,15	-	±0,2	±1,0%	
Shape and position Tolerance according to DIN 40680-2m	e.g. straightness 0,5% of the length independent according to DIN ISO 8015								
Precision finishing	Tolerances as required grinding, lapping, polishing, honing etc.								


¹⁾ = three-point bending test


²⁾ = four-point bending test

Material comparison	C221	C230	C410	C520	C620	C795	C799	C830	A
Mechanical									
Strength	0		-		0	+	+	++	
Density	-		-		-	0	+	++	(
Hardness	0		0	-	0	+	++	+	
Wear resistance	0		-	-	0	+	++	++	
Thermal									
Conductivity	-	-	-	-	0	++	++	-	
Thermal linear expansion	0	+		-	0	0	0	+	-
Resistance to thermal shock	0	0	+	+	0	0	0	-	+
High temperature stability	+	0	+	+	+	++	++	0	+
Electrical									
Electrical insulation	++	-	0		+	+	+	0	-
Dielectric constant	-		-		0	0	0	++	
Dissipation factor	-		++			-		-	
Chemical resistance	0		-	-	0	+	++	+	(
++ very high + high	O average			- low		V6	ery low		

The materials used for our components comply with DIN EN 60672. The specified values refer to tests performed with test specimens and thus can only be used conditionally for serial components.



For further information, please scan the pictured QR-Code.

Beste Qualität · Faire Bezahlung · Sichere Arbeitsplätze · Hohe Umweltstandards

VOGT GmbH

Ottensooser Straße 52 D-91239 Henfenfeld

Tel.: +49 (0) 91 51 90 75 - 0 Fax: +49 (0) 91 51 90 75 - 200

Mail: info@vogt-ceramic.de Web: www.vogt-ceramic.de